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ABSTRACT 

 The Soil Moisture and Ocean Salinity (SMOS) satellite provides retrievals of soil moisture in the 

upper 5 cm with a 30-50 km resolution and a mission accuracy requirement of 0.04 cm3 cm-3.  These 

observations can be used to improve land surface model soil moisture states through data assimilation.  In 

this paper, SMOS soil moisture retrievals are assimilated into the Noah land surface model via an 

Ensemble Kalman Filter within the NASA Land Information System.  Bias correction is implemented 

using Cumulative Distribution Function (CDF) matching, with points aggregated by either land cover or 

soil type to reduce sampling error in generating the CDFs.  An experiment was run for the warm season of 

2011 to test SMOS data assimilation and to compare assimilation methods.  Verification of soil moisture 

analyses in the 0-10 cm upper layer and root zone (0-1 m) was conducted using in situ measurements 

from several observing networks in the central and southeastern United States.  This experiment showed 

that SMOS data assimilation significantly increased the anomaly correlation of Noah soil moisture with 

station measurements from 0.45 to 0.57 in the 0-10 cm layer.  Time series at specific stations demonstrate 

the ability of SMOS DA to increase the dynamic range of soil moisture in a manner consistent with 

station measurements.  Among the bias correction methods, the correction based on soil type performed 

best at bias reduction but also reduced correlations.  The vegetation-based correction did not produce any 

significant differences compared to using a simple uniform correction curve. 
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1 INTRODUCTION 

Soil moisture is a quantity of direct interest in such diverse fields as agriculture, public 

health, water management, ecology, drought/flood monitoring and forecasting, and military 

operations.  It also impacts weather processes over land by governing the available moisture for 

evapotranspiration and surface sensible and latent heat fluxes.  These quantities in turn affect 

boundary layer growth and destabilization.  During warm-season months, diurnal heating and 

convective initiation depend strongly on evapotranspiration and available boundary layer 

moisture, which are substantially affected by soil moisture content.  Therefore, accurate 

initialization of the land surface state in numerical weather prediction (NWP) models is 

important for depicting the exchange of heat and moisture at the land surface.  Previous studies 

have demonstrated the impact of land surface initialization on NWP forecasts and its influence 

on such variables as planetary boundary layer height and cloud cover [1]–[12]. 

Land surface models (LSMs) provide a valuable tool for all of these applications, 

enabling the simulation of soil moisture and temperature (state variables) based on precipitation, 

surface temperature and humidity, and radiation inputs (forcing variables) as well as properties 

of the soil and land cover.  Data assimilation (DA) can be used to update LSMs by combining 

model states (background) with observations of state variables or related quantities to provide an 

updated model analysis superior to either data source used alone [13].  This allows LSMs to 

benefit from a combination of observations of both precipitation (a forcing variable) and soil 

moisture (a state variable) [14].       

Satellite observations are particularly well suited for updating models, since they provide 

global coverage with frequent revisit times (usually once or twice daily for a polar orbiting 

satellite). Due to the influence of dielectric constant on emissivity, low-frequency (window 
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channel) microwave brightness temperatures are sensitive to the liquid water content near the 

soil surface (and in the vegetation canopy) [15], [16].  Microwave remote sensing data, either in 

the form of directly observed radiances (or equivalently, brightness temperatures), or retrieved 

products, have successfully been used to update the soil moisture state in LSMs.  The first 

instruments used extensively for this purpose used channels in the 6-10 GHz range, beginning 

with the Scanning Multichannel Microwave Radiometer (SMMR) [17]–[19], followed by the 

Advanced Microwave Scanning Radiometer (AMSR) [20], [21], Tropical Rainfall Measurement 

Mission (TRMM) Microwave Imager (TMI) [12], and Microwave Radiation Imager (MWRI) 

[22].  Retrievals from an active sensor, the Advanced Scatterometer (ASCAT), have also been 

assimilated [20], [21], [23], and are being used operationally at the United Kingdom Met Office 

[24] and the European Centre for Medium-Range Weather Forecasts (ECMWF).          

The era of operational L-band instruments began with the 2009 launch of the Soil 

Moisture and Ocean Salinity (SMOS) mission [25], [26] by the European Space Agency (ESA). 

The SMOS radiometer, Microwave Imaging Radiometer with Aperture Synthesis (MIRAS), uses 

a dual polarized synthetic aperture and senses radiation at 1.4 GHz. This lower frequency gives it 

the advantages of greater accuracy (0.04 cm3/cm3), better penetration of vegetation canopies, and 

a greater soil penetration depth (up to 5 cm) [27], at the cost of a larger horizontal footprint (35-

50 km) [28].  Assimilation of SMOS retrievals [29], [30] and brightness temperatures [23], [31] 

is the focus of several current efforts, including operational brightness temperature monitoring at 

ECMWF [32] and Environment Canada [33]. 

Another L-band mission, NASA’s Soil Moisture Active Passive (SMAP) [27] was 

launched in January 2015.  SMAP includes a 1.41 GHz radiometer and a 1.2 GHz synthetic 

aperture radar.  Its combined (active/passive) soil moisture retrieval product was intended to 
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provide a similar accuracy to SMOS with a higher resolution (9 km) due to the addition of the 

radar [34].  Unfortunately, the SMAP radar failed a few months into the checkout period [35], 

but it is hoped that this design could be the basis of future observing systems.   

The goal of this research is to improve the accuracy of soil moisture analyses in an LSM 

by assimilating SMOS retrievals.  These soil moisture fields may be used directly in applications 

such as agriculture, drought monitoring, and flood prediction.  In this paper, we evaluate the 

impact of assimilating SMOS soil moisture observations into the Noah LSM (Section 2.3).  

These investigations are conducted within the framework of the Land Information System (LIS; 

Section 2.2).  This research specifically focuses on the use of SMOS data in a widely used LSM 

based on a configuration (Section 4.1) used by forecasters for operational decision support.  

Both direct radiance (or brightness temperature) assimilation [36]–[38] and retrieval 

assimilation  [18], [19], [21] are commonly used for land surface assimilation in an effort to 

improve soil moisture analyses.  Direct radiance assimilation offers some theoretical advantages 

such as a more accurate specification of error and the elimination of inconsistencies and/or 

correlated errors between retrievals and background [39]–[41].  However, there are some 

advantages to retrieval assimilation for land surface modeling and for SMOS data in particular: 

1) the assimilated product may be monitored in model space in readily understandable soil 

moisture units; 2) the SMOS retrieval is a complex product utilizing overlapping observations at 

different incidence angles [42], which is not easily implemented into an assimilation system; 3) 

the SMOS sensor has shown substantial biases that are not well understood [42], [43], making 

bias correction in radiance space more problematic; and 4) the assimilation of bias-corrected 

retrievals is easily transferred to new sensors because the rescaled retrievals will  have similar 

distributions even though the observing systems are quite different.  The assimilation of SMOS 
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retrievals will therefore expedite the operational utilization of data from the recently launched 

SMAP mission. 

2 MODELS AND OBSERVATIONS 

2.1  SMOS 

We assimilate soil moisture retrieved from the SMOS User Data Product Level 2 

(SMUDP2) data [44], obtained from the ESA Centre Aval de Traitement des Donées (CATDS).  

This product has a resolution of 30-50 km with a mission accuracy requirement of 0.04 cm3/cm3 

[25].  Validation experiments have shown results close to the target accuracy [45], with RMSE 

between 0.043 (morning) and 0.047 cm3/cm3 (evening) reported over sites in the U.S. [46].  The 

retrieval algorithm [45] uses multiple views of the same scene at different incidence angles and 

two polarizations.  A Bayesian cost function is applied to find the soil moisture content and 

vegetation opacity that best fits the observed brightness temperatures and a priori parameter 

values. The algorithm uses static databases for soil texture, topography, and other properties, 

including the ECOCLIMAP land use database.  Auxiliary dynamic data includes weather 

parameters such as snow cover, temperature, and rain from ECMWF as well as vegetation 

optical thickness based on Leaf Area Index (LAI).  The algorithm accounts for the presence of 

subpixel inhomogeneity based on ECOCLIMAP, including barren (rocky) and urban areas, 

forests, and bodies of water.   

The performance of the algorithm varies depending on the presence of vegetation and 

other factors.  Due to canopy effects, performance is worse in dense vegetation.  In extreme 

cases such as Amazonia, soil properties cannot be detected; over moderately dense forests such 

as boreal forest in Canada, RMSE ranges from 0.15 to 0.18 cm3/cm3 [47].  Significant 

interference from radio frequency interference (RFI) is most prevalent in parts of Europe and 
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Asia [48].  Scenes with high topographic index are also excluded due to the difficulty of 

simulating the surface topography.  

2.2  NASA Land Information System 
 

The NASA LIS is a land surface modeling framework developed at NASA-Goddard 

Space Flight Center that integrates community LSMs with forcing, parameter, and observational 

datasets within a high-performance computing environment [49], [50].  It includes a DA 

capability through an Ensemble Kalman Filter (EnKF).  To facilitate intercomparisons, users 

may select LSMs, forcing data sources, land cover and soil type data sources, and other 

parameters from a variety of datasets.  The architecture is modular to enable users to add new 

models and datasets.  We have adapted LIS to assimilate the SMOS retrieved soil moisture 

product into the Noah LSM, as described in Section 3.  

2.3 Noah Land Surface Model 

We employ version 3.2 of the Noah LSM.  Developed jointly by the National Center for 

Atmospheric Research (NCAR) and the National Centers for Environmental Prediction (NCEP), 

the Noah LSM is a unified code for research and operations.  Temperature and water content are 

modeled in four soil layers with thicknesses of 0.1, 0.3, 0.6, and 1 m, as well as in the vegetation 

canopy and a possible snow layer [4], [51], [52].  The model includes formulations for 

evapotranspiration, soil drainage and diffusion, and runoff.  The Noah LSM also predicts soil ice, 

fractional snow cover effects, has specialized urban treatment, and considers surface emissivity 

properties.  When coupled to an NWP model, the scheme provides sensible and latent heat fluxes 

to the atmospheric boundary layer.  [53] provides a comprehensive summary of the formulation 

and physical components comprising the Noah LSM as run at the NCEP Environmental 

Modeling Center.   
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2.4 Ensemble Kalman Filter 

The assimilation of SMOS retrievals is implemented using the EnKF [54][55] 

assimilation system included in LIS [56].  A Kalman Filter combines a forecast (background) 

with observations (soil moisture retrievals, in this case) to generate an improved estimate of a 

model variable.  In an EnKF, an ensemble of model runs is used to represent the model state and 

its associated uncertainty.  Here, the ensemble is generated with perturbations to represent errors 

in the state, forcing, and observations.  At each assimilation step, the new state of each ensemble 

member is computed as a weighted average of the observations (retrieved soil moistures) and the 

model background.  The weighting is determined by the relative size of the background and 

observation errors, with the background error being determined by the ensemble covariance.  

The observation operator is simply a rescaling (described in Section 3.1) of the top layer of the 

soil moisture state (0-10 cm in Noah).  Because of this, only the top layer is adjusted directly, but 

deeper layers of soil moisture can change slightly in the DA step due to background covariances.  

A more significant impact (over time) on the deeper layers can occur resulting from the modeled 

physical processes of drainage and diffusion [57].  In the present LIS architecture, observations 

are assimilated separately at each cell, so there are no horizontal background correlations.   

2.5 Demonstration of Assimilation 

 An illustration of the assimilation process is shown in Figure 1 for a scenario with an 

unusually strong signal observed at 0000 UTC 1 April 2013.  Prior to any assimilation (Figure 

1a), the model had moderate-to-high soil moisture over most of the domain.  The SMOS satellite, 

whose swath traverses the western half of the domain, indicates extremely wet conditions over 

much of the lower Mississippi Valley (Figure 1b), whereas the model background 

underestimated the soil moisture where irrigation had occurred in this region.  The analysis 
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(Figure 1c) combines features of both fields but clearly depicts the area of enhanced soil 

moisture from the SMOS retrievals. Figure 1d shows irrigated areas from the Food and 

Agriculture Organization (FAO) of the United Nations [58], [59], largely coinciding with the 

area of elevated soil moisture shown in the analysis.  Since no irrigation data source was used in 

the LIS run, the irrigation signal is not present in the model background, but the wet area is 

incorporated into the model through the assimilation process.  The large amount of available 

moisture and resulting land-atmosphere interaction in this part of the southeastern U.S. during 

the spring and summer may have significant impacts on the boundary layer and convective 

potential.  Hence, better depiction of these processes in a numerical model could potentially 

improve weather forecasts in these situations. 

3 IMPLEMENTATION 

3.1 Bias Correction 

3.1.1 Cumulative	Distribution	Function	Matching	
 

Assimilation systems generally assume that observations are unbiased relative to the 

model [60].  There are many sources of error in model and observations (whether using radiance 

or retrieval assimilation), including measurement (and retrieval) errors, forcing errors, and 

uncertainties in soil and vegetation parameters.  When assimilating data, there may be systematic 

errors due to the discrepancy between the sensor’s detection depth and the modeled layer depth, 

due to sharp vertical gradients near the surface [61].  Moreover, there are representativeness 

errors due to the vertical resolution of the model and the variability in the penetration depth of 

the sensor.  Bias correction techniques are employed in most if not all satellite DA efforts (but 

rarely for in situ observations) in order to adjust the observations to fit the model climatology 

[12], [62].   
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One of the most common bias correction techniques in land DA is Cumulative 

Distribution Function (CDF) matching [17], in which an observation is corrected to a model-

equivalent value.  CDF matching is often applied by building up model and observation CDFs at 

each grid cell independently [17], but a weakness of this approach is that it needs a long training 

period to obtain a reasonable sample size to establish the correction curves.  This long training 

can be reduced by using a larger search radius around each point to build up the a priori 

distributions [17], [21].  This method assumes ergodicity and substitutes spatial variability for 

temporal variability. [17] found a period of one year was sufficient to establish CDF curves for a 

2-degree search radius.  However, with soil moisture satellite missions, such as SMOS and 

SMAP only scheduled for 3-5 years of operations, even a one-year bias-correction period does 

not allow for use of the data early in the mission lifetime.  The use of multi-year training periods 

also precludes the use of corrections to account for seasonal biases or instrument drift [63].  

While most existing soil moisture bias correction efforts correct the observations to match the 

model distribution at each point, other approaches are possible.  For example, [64] suggested 

using a single first-order correction in global assimilation efforts. 

A strength of satellite observations is that they are physically based, globally consistent 

measurements.  In contrast to pointwise methods, a looser constraint (e.g. matching the CDF in 

the aggregate rather than at each grid cell) can use the physically consistent satellite observations 

to correct for spatially varying biases in the model, perhaps due to heterogeneous errors in the 

forcing data, or to unmodeled processes such as irrigation.  This approach allows observational 

datasets of both precipitation and soil moisture to influence the model climatology. 
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3.1.2 Variations	Tested	
 

We compare three bias correction methods based on spatial aggregation of a large 

number of points.  The simplest method (BC1), a uniform CDF-matching correction applied to 

all points, serves as a baseline for testing the more complex methods.  Figure a shows CDFs for 

observations (SMOS retrievals) and coincident model values taken from March to September in 

2013. When the correction is applied, each retrieved soil moisture values is converted to an 

equivalent value in the model climatology based on the two CDFs.  The remaining two methods 

are based on shared physical properties.  Results from all three bias correction methods are 

compared to results obtained from DA with no bias correction, and to an open loop (OPL) 

control run. 

From Figure 2a, we observe that the observations are drier in general, and also have a 

larger dynamic range. The Level 2 soil moisture product, while normally interpreted as 

volumetric soil moisture, has a range that varies up to 1 and is not limited by the soil porosity 

value.  This was an intentional choice by ESA to preserve the signal in flooded areas [44].  To 

correct SMOS retrievals into a model-appropriate value, the CDF correction converts the Level 2 

data value (with a maximum value of 1) to a model-equivalent value of volumetric soil moisture 

(with a maximum value equal to the soil porosity).     

Several sources of bias vary systematically with physical properties of the surface and 

vegetation.  Some of these bias sources are related to the radiative signal, such as the thickness of 

vegetation, affecting the microwave sensitivity to the surface layer [12].  Others, such as wilting 

point and field capacity [12, 50], are hydrological.  We have hypothesized that the bias 

characteristics are strongly dependent on either land use type or soil type, and developed two 

variants of the CDF-matching correction [17] aggregating points with similar soil and land use 
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classifications.  We previously applied a similar approach to the assimilation of AMSR-E soil 

moisture retrievals based on land use only [66].   

The soil classes used were initially assigned according to the State Soil Geographic 

(STATSGO) [67] database.  To reduce sampling error for classes that had relatively few points, 

these classifications were aggregated into groups with physically similar types as well as similar 

CDFs (Table 1), resulting in seven groups.  For example, STATSGO classes 2 and 3 (Loamy 

Sand and Sandy Loam) were combined into the “Sandy Loam Group”.  Each of the seven groups 

has a correction curve derived based on the CDF of coincident observations (SMOS retrievals) 

and model values (Figure 2b).  Following a similar procedure, a separate correction based on 

land cover was derived using the International Geosphere-Biosphere Programme (IGBP) 

Moderate Resolution Imaging Spectroradiometer (MODIS) land use classification [68].  Classes 

were again aggregated based on geophysical similarities as well as similarity in CDFs (Table 2), 

resulting in six categories with separate correction curves (Figure 2c).  

Grouping points by land cover or soil classification serves the same purpose as the search 

radius in [17], reducing sampling error for building the CDFs by combining many spatial points.  

This looser constraint enables the observations to adjust the climatological distributions 

geographically.  However, it might give poorer results if biases depend strongly on other factors.  

In light of this, bias correction maps should be monitored to understand shifts in spatial soil 

moisture patterns and determine whether the changes are correcting spatial biases in the model.  

Other variations on this method could be applied to limit the aggregated points to a 

certain radius, stratify by soil type rather than land cover class, and/or allow the correction to 

vary seasonally as in [21]; however the objective of this paper is to demonstrate an initial 

methodology for assimilation of SMOS data using a basic technique.  By implementing a method 
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that only needs a few months of satellite records, we plan to establish a technique that can be 

quickly applied for SMAP DA.   

The correction curves used in this study were derived from coincident observation and 

modeled data from an independent monitoring (non-assimilating) run conducted for March to 

September 2013.  One particular challenge for generating a CDF over the southeast U.S. is that 

the domain includes regions around the lower Mississippi Valley with extensive irrigation 

(primarily for rice) in the spring and early summer months that is not captured in the forcing 

data, but is observed by the SMOS sensor.  As this methodology allows model distributions to 

adjust in order to fit the observations, it was important to eliminate points with a known 

significant model bias from the training set.  Therefore, an area around the irrigated region, 

shown as the box in Figure 3, was excluded from the CDF database prior to June 1. 

3.2 Quality Control 

Quality control is applied after eliminating overlapping observations and incorporates 

both model fields and SMOS data flags.  The SMOS data flags [69] used to reject retrievals 

include Data Quality Index (DQX>0.06, [70]), Global Quality Index (GQX>10), RFI Probability 

(RFI_Prob>0.25), and Soil Moisture (negative values indicating).  Where the precipitation (from 

the model forcing data) is above 1 mm/hr, observations are rejected, since emission from liquid 

water in the atmosphere obscures the surface signal.  Observations are also rejected where the 

surface is frozen and/or snow covered since the algorithm is designed to sense liquid water.  

4 DATA ASSIMILATION EXPERIMENT  

4.1 Study Area 

The model domain (Figure 1) includes the central and southeastern United States with a 

~3-km grid spacing.  It includes a variety of temperate land cover types listed in Table 2.  This 
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domain is used by the NASA Short-term Prediction Research and Transition (SPoRT) Center to 

provide near-realtime LSM output to National Weather Service forecasters.  This product has 

been used by operational forecasters as input for drought monitoring [71] and for situational 

awareness for flood potential [72].   Performing the experiments in this domain using a similar 

LIS configuration allows us to test the impact of SMOS data in an environment that could be 

used for decision support.  This scale is consistent with the 1-3 km resolutions commonly used 

regional and national (CONUS) LSM and NWP configurations, and enables the depiction of 

gradients in soil moisture on sub-county scales that can be used to better depict hydrological and 

meteorological features associated with localized flooding and drought.  This grid spacing is also 

fine enough to allow convection in NWP models [73], which means that the current domain can 

be used for future coupled land/atmosphere examining the impact of initial soil moisture 

conditions on convective initiation.  

With a grid spacing of ~3 km, the model resolution is much finer than the retrieval 

resolution.  Consequently, LIS has been configured to apply each observation to multiple points 

within the observation field of view (FOV).  In the case of overlapping FOVs, only the nearest 

observation is retained for each grid cell.  The maximum radius was set at 18 km, considering the 

range of FOV sizes (30-50 km diameter) and the observation spacing.  Some disaggregation is 

achieved through the land-cover-based bias correction.  A more idealized approach might 

include a forward operator that averages model values over all grid points within the FOV.  

Future data products may be available on a resolution similar to this grid spacing, as 

demonstrated by the 3-km resolution of the short-lived SMAP radar. 
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4.2  Experiment Design and Model Configuration 

 We tested the impact of assimilating SMOS retrievals using ensemble runs of the Noah 

LSM within LIS for the period from 1 Feb. to 1 Oct. 2011.  Additionally, the bias correction 

methodology was evaluated by separately testing assimilation with three versions of the bias 

correction as well as one simulation with assimilation but no bias correction.  The validation 

period was begun on 1 March to allow the results to reflect the impact of repeated DA in a 

cycling framework.  The model runs (Table 3) were:  1) a control run (open loop, OPL) with 

perturbations but no assimilation, 2) a SMOS DA run with no bias correction (NoBC), 3) SMOS 

DA with a uniform (spatially invariant) bias correction scheme (BC1), 4) SMOS DA with a soil-

type-dependent bias correction (BCS), and 5) SMOS DA with a bias correction dependent on 

vegetation/land cover (BCV). 

All simulations consisted of 32-member ensemble runs.  These were initialized with a 

multi-year single member spin-up ending on 1 Feb. 2011, followed by a one-month open loop 

ensemble run to spin up the state and forcing perturbations.  Perturbations were generated using 

the methodology and values of [74].  The forcing perturbations consisted of additive 

perturbations with σ=50 W m-2 to longwave radiation, and multiplicative perturbations for 

shortwave radiation (σ=0.3) and precipitation (σ=0.5), where the shortwave perturbations were 

negatively correlated with the other two.  For the DA simulations, the observation perturbation 

was a random normal variable with a standard deviation of 0.04 cm3 cm-3, based on the stated 

SMOS design accuracy [25].  It is expected that this value could be optimized by continued 

experimentation.  Further refinement may be possible by allowing the SMOS uncertainty to vary 

in space or time, since the data do include uncertainty information and previous studies have 

shown that the retrieval accuracy is variable [75], [76]. 
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 Model runs were forced with temperature, humidity, winds, and incident radiation at the 

surface from the North American Land Data Assimilation System-2 (NLDAS-2) at 1/8-degree 

resolution [77] and 4-km gridded precipitation from Stage IV combined radar/rain gauge 

analyses [78].  Land use categories were set according to the IGBP land-use classification [68] as 

applied to the MODIS instrument [79].  Soil types were classified according to the State Soil 

Geographic (STATSGO) [67] database.    Static and dynamic land surface fields were masked 

based on the IGBP/MODIS land-use classes.  Static properties including porosity, saturated 

suction, saturated hydraulic conductivity, field capacity (with minor changes), and wilting point 

are soil type-dependent and were set from lookup table values published by [4] based on 

measurements by [80].  Other static fields such as minimum canopy resistance are assigned 

according to the land use category.  Green vegetation fraction (GVF) was derived from daily 

real-time MODIS data [81].  The Noah LSM determines albedo, roughness length, and LAI from 

GVF based on a linear scaling and ranges defined in the land use lookup table. 

 The Noah LSM was run with a model timestep of 30 minutes.  Retrievals are available up 

to twice daily at each location, with some missing data due to quality control and gaps between 

swaths.  LIS was configured to assimilate data on a 6-hour time step.  For this domain, all the 

observations were assimilated during the 0000 and 1200 UTC cycles (roughly 6 a.m. and 6 p.m. 

local time) due to the sun-synchronous orbit of SMOS.  There was no time interpolation or other 

temporal correction, rather each observation that occurred during the 6-hour window was applied 

simultaneously at either 0000 or 1200 UTC.  This was not expected to be a significant source of 

error since the observations occur within about 2 hours of the assimilation time and soil moisture 

generally varies slowly apart from rain events. 
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4.3 Validation Methodology 
 
 In situ measurements of soil moisture are a valuable independent and well-calibrated 

dataset for LSM validation.  Validation of the model runs was conducted by comparing model 

soil moisture values for the 0-10 cm (surface layer) and 10-100 cm (root zone) layers from each 

simulation against in situ observations from the North American Soil Moisture Database 

(NASMD) [82] obtained from Texas A&M University.  These station observations were used for 

validation only and were not used as inputs to the any of the model simulations.  The model’s 

upper layer (0-10 cm) soil moisture was validated against measurements from the corresponding 

depths (typically 5 cm).  Additionally, a weighted average of available in situ measurements 

from 10-100 cm was used to validate the model’s root zone soil moisture.  To eliminate 

unreliable stations, stations with fewer than 150 days of observations and those that were 

negatively correlated with any model run (applying a 15-day moving average) were removed.  

After quality control, there remain 194 stations for validation of the surface layer, and 137 

stations for the root zone.   

Values for bias, root-mean square error (RMSE), unbiased RMSE (ubRMSE), and 

Pearson correlation were calculated at the chosen stations for the period 1 Apr. 2011 to 1 Oct. 

2011 for each model simulation.  Because comparisons of model grid-scale values to point-based 

field measurements is limited by representativeness errors, and due to possible mismatches 

between model and actual properties such as soil type and vegetation class, we expect the latter 

two metrics (which are insensitive to bias) to be the best indicators of DA performance.  We 

hypothesize that SMOS assimilation will significantly improve correlation and ubRMSE.  Due to 

the intrinsic biases between satellite and station data, we expect the magnitude of bias to increase 

for all DA runs compared to the OPL run.  All three metrics can be used to judge the quality of 
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the bias correction methods, although we do not expect the differences to be large. 

5 VALIDATION RESULTS 

5.1 SMOS retrieval validation 
 
 As a preliminary step to model verification, we compared SMOS retrieved soil moistures 

to the field measurements from the NASMD.  This was not intended to be a rigorous evaluation 

of SMOS accuracy but rather to give context to the model validation results.  For a more 

complete validation of SMOS retrievals, the reader is referred to [46, 47, 83-85].  Bias, RMSE, 

ubRMSE, correlation, and anomaly correlation were calculated for collocated, quality-controlled 

SMOS and ground station observations in the domain within the experiment time period (1 Apr. 

2011 to 1 Oct. 2011).  From the stations passing quality control in Section 4.3, we chose those 

that had at least 20 satellite matches during this period, yielding a validation dataset of 182 

stations. 

 Results from comparing SMOS retrieved soil moisture and ground station measurements 

are given in Table 4 and Figure 4.  Table 4 summarizes the statistical results (bias, RMSE, 

ubRMSE, correlation, and anomaly correlation with their 95% confidence intervals) from the 

182 stations with a total of 15,017 collocated observations.  Statistical metrics were calculated 

using equal station weighting and the ubRMSE was calculated by subtracting the mean bias 

(constant term) over the whole dataset.  The RMSE of 0.121 is three times as large as the 

accuracy goal of 0.04.  However the ubRMSE, calculated by subtracting out the constant mean 

bias term, is 0.071, which is within a factor of two.  

 Histograms for the five evaluation metrics are presented in Figure 4, exhibiting a wide 

range of performance across stations.  Note that discrepancies between these two soil moisture 

estimates can be attributed to a) measurement error of the ground station, b) errors in the 
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retrieval product including radiometric measurement error, and c) representativeness error.  Of 

these error sources, the first should be low for well-calibrated stations whereas the other sources 

may vary significantly between stations (e.g., retrieval error is larger in dense vegetation, and 

representativeness error may be worse when the satellite FOV is heterogeneous).  If we attribute 

the spread in the histograms chiefly to the variation in representativeness error, we can estimate 

the RMSE of the SMOS retrieval to be between 0.04 (best case) and 0.08 (mode of all values).  

Using similar reasoning, we can estimate the ubRMSE to range from 0.04 to 0.06.  These 

estimates apply to a “best case” scenario where retrieval errors are minimized (e. g., for areas 

with low to moderate vegetation). 

5.2 Experiment results 
 

Figure 5 shows modeled and observed time series of upper layer (0-10 cm) and root zone 

(0-1 m) soil moisture from three selected stations (among those exhibiting the largest impact) in 

Missouri, Oklahoma, and Illinois.  Vertical bars indicate rainfall (from the model forcing data), 

which causes a sharp increase in upper layer soil moisture, typically followed by an asymptotic 

drying behavior.  Significant rain events generally coincide with increases in the station data 

(black curves).  However, less significant rain events do not always appear in the station time 

series, indicating small errors in the forcing.  For simplicity, values from only the OPL, NoBC, 

and BC1 model runs are plotted.  The control run (OPL, in red) provides a baseline for the 

impact of uncorrected DA (NoBC, blue).  The magnitude of bias corrections is generally small, 

seen by the separation of the green (BC1) and blue curves. 

Both DA runs exhibit some added noise, particularly in the upper zone, which is most 

likely due to random error in the SMOS observations.  Each of these stations shows an 

improvement in correlation due to assimilating SMOS data.  DA increased the model dynamic 
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range for each case, better matching the station measurements.  The DA runs are better able to 

capture the seasonal drying trend seen in both layers, with closer values to the station 

measurements both in the early spring when the soil is relatively wet and in the fall when the soil 

is drier.  The DA runs also show an increased (improved) dynamic range on shorter scales in the 

upper zone such as the drying trend during July and after the rain in early August in panels a and 

c, and in the March and April drying trend in panel c.  The limited dynamic range of the OPL 

runs for these cases may be an indication that some model parameters are not properly optimized, 

and parameter estimation methods (e.g. [86]–[88]) may improve the model behavior here.  

Nevertheless, these examples illustrate how DA of SMOS soil moisture retrievals can improve 

model estimates in the presence of model weaknesses. 

Tables 5 and 6 summarize the results over all validation sites for the upper zone (0-10 

cm) and root zone (0-1 m).  All values were calculated using the Land surface Verification 

Toolkit (LVT) [89] after applying QC to select stations.  In the upper zone, the effect of DA is 

seen most clearly in the impact on correlation scores.  All DA runs show a significant increase in 

correlation compared to the control run (OPL).  The overall impact on RMSE and ubRMSE is 

not significant, which is not surprising given that the model control run matches the stations 

better than the SMOS retrievals do.  The NoBC run exhibits the highest correlation of all runs, 

0.573, compared to 0.451 for OPL.  Because the OPL bias (relative to the stations) is 

coincidentally very close to zero, it is not surprising that NoBC increased the magnitude of the 

bias, to a value of -0.026 cm3 cm-3.  Since they are designed to correct toward the OPL model, all 

bias correction methods were expected to reduce the bias compared to NoBC, but only the BCS 

(soil-based correction) significantly reduced it, indicating that the soil type-dependent method is 

most effective at reducing bias based on previously calculated correction curves.  However, the 
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BCS has a lower correlation than the other bias correction methods (BC1 and BCV).  The 

unbiased RMSE had little variation, showing a small, statistically insignificant improvement due 

to DA.  The two category-based corrections did not significantly reduce the unbiased RMSE as 

expected.  A follow-up investigation should be conducted to determine if the correction curves 

shown in Figure 2 are consistent interannually and interseasonally.  In the root zone, the bias 

exhibited some statistically significant changes, but due to intrinsic biases between the station 

measurements and model values, it is difficult to draw conclusions from these changes.  The 

other metrics did not show statistical significance.  

Maps indicating changes in correlation and unbiased RMSE at each station location are 

shown in Figure 6.  In each map, blue colors indicate improvement and red indicates degradation.  

The maps indicate that the anomaly correlation improvements are widespread (particularly in the 

0-10 cm layer) with a high degree of spatial coherence.  Performance was best in the 

northern/western portions of the domain, and poorer in the southeastern quadrant.  The reduction 

in unbiased RMSE, although statistically insignificant, is evident in the majority of locations for 

the upper layer.  For the root zone, the changes are not consistently in one direction, thus 

showing no particular improvement.  

6 SUMMARY  

The NASA SPoRT Center has implemented the assimilation of soil moisture retrievals 

from the SMOS satellite within the NASA LIS.  A bias correction methodology using a CDF 

matching technique, stratified by land cover class or soil type, has also been developed.  

Validation against the North American Soil Moisture Database shows that upper layer (0-10 cm) 

correlation scores are clearly improved for all DA experiments (three bias correction methods 

plus no bias correction) relative to the OPL baseline.   A map of correlation improvements shows 
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that the effect is widespread.  Time series at selected stations show that DA improves both short-

term and seasonal trends, with larger dynamic ranges from spring to fall being evident at the 

selected stations in both upper and root zones.  Unbiased RMSE reduction due to DA was not 

statistically significant although the map of changes showed the improvements were generally 

consistent.  No significant changes were detected in the root zone, although correlations had a 

slight improvement due to DA as confirmed by a map. 

Because the retrieval dynamic ranges and/or distributions can differ markedly from the 

model, bias correction is desirable.  The soil-type-based correction was best at reducing bias 

compared to stations, but had slightly worse correlation scores than the other methods.  The land-

cover-based correction showed no significant benefits over the simple uniform correction when 

validating against stations. As an attempt to improve on these results, bias correction curves 

should be examined for different years and seasons to see how much variation they exhibit.  

Hybrid bias correction methods could also be explored, using a radius of influence as in [17] but 

limited to similar soil or land use type. 

The study period was limited to one warm season over the southeastern U.S.  Further 

investigation could reveal if the SMOS data has similar impact during other years and in other 

geographic regions.  The experiment was conducted using forcing data from the robust Stage IV 

and NLDAS-2 datasets available over North America.  Tests of the DA system in regions with 

poorer forcing data quality would be expected to show even stronger impact.  Other 

improvements to the DA procedure could be implemented, such as 1) specification of the 

retrieved soil moisture uncertainty using satellite data quality indicators; 2) development of a 

forward operator that properly aggregates all pixels within the field of view; 3) ensuring 



 22 

consistency between the ECOCLIMAP subpixel vegetation database used in the SMOS 

retrievals and the LSM land cover classification.  

The SMOS assimilation will be implemented in SPoRT's near-real-time LIS modeling 

efforts and made available on the SPoRT web site (http://weather.msfc.nasa.gov/sport).  SPoRT 

is also working to assimilate SMAP Level 2 soil moisture retrievals, based on experience gained 

from assimilating SMOS data.  Because previous studies have demonstrated the impact of more 

accurate surface boundary and initial conditions on numerical weather forecasts, future efforts 

will investigate the impact of assimilating SMOS and SMAP data on regional NWP model runs 

initialized from LIS output, assessing the sensitivity of weather forecasts to SMOS and SMAP 

assimilation and also validating the forecasts against observations from ground stations, 

soundings and precipitation analyses. 
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Aggregated 
Category 

STATSGO 
Index 

STATSGO Description Percent of 
Domain 

Sand  1 Sand 7.6 
Sandy Loam Group 3 Sandy Loam 20.1 

2 Loamy Sand 4.5 
Silt Loam Group 4 Silt Loam 37.5 

13 Organic 1.4 
Loam 6 Loam 12.6 
Clay Loam Group 8 Silty Clay Loam 5.8 

9 Clay Loam 3.6 
7 Sandy Clay Loam 0.7 

Silty Clay 11 Silty Clay 1.6 
Clay 12 Clay 4.6 
Table 1.  Soil type category groupings used for establishing bias corrections, with corresponding 
STATSGO indices and percentage of the domain occupied by each type. 

 
Aggregated 
Category 

IGBP 
Index 

IGBP Description Percent of 
Domain 

Deciduous Forest 4 Deciduous Broadleaf Forest 18.4 
Other Forest 5 Mixed Forests 10.7 

8 Woody Savannas 3.0 
2 Evergreen Broadleaf Forest 2.4 
1 Evergreen Needleleaf Forest 1.9 
3 Deciduous Needleleaf Forest <0.1 

Crops 12 Croplands 28.8 
14 Cropland/natural vegetation 

mosaic 
16.6 

16 Barren or sparsely vegetated <0.1 
Grasslands 10 Grasslands 14.3 

9 Savannas 0.3 
Shrublands 7 Open Shrublands 0.8 

6 Closed Shrublands <0.1 
Urban 13 Urban and Built-Up 2.7 
Table 2.  Land use category groupings used for establishing bias corrections, with 
corresponding IGBP indices and percentage of the domain occupied by each type. 
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Experiment 
Code 

Name Data 
Assimilation? 

Bias 
Correction 

OPL Open Loop No None 
NoBC No Bias Correction Yes None 
BC1 Uniform Bias Correction Yes Uniform 
BCS Soil Bias Correction Yes Soil-based 
BCV Landcover Bias Correction Yes Landcover-based 
Table 3.  Overview of simulations conducted. 

 
Metric Value 
Bias -0.060 ± 0.013 
RMSE 0.120 ± 0.007 
ubRMSE 0.071 ± 0.003 
Correlation 0.553 ± 0.027 
Anomaly Correlation 0.411 ± .0.24 
Table 4.  Statistics for SMOS retrievals compared against ground stations. 

 
Metric Upper Layer Soil Moisture 
# Stations 194 
Experiment OPL NoBC BC1 BCS BCV 
Bias -0.000 ± 0.011 -0.026 ± 0.011 -0.023 ± 0.011 -0.005 ± 0.011 -0.025 ± 0.011 
RMSE 0.082 ± 0.005 0.087 ± 0.006 0.086 ± 0.005 0.082 ± 0.005 0.087 ± 0.006 
Unbiased 
RMSE 0.046 ± 0.003 0.043 ± 0.002 0.043 ± 0.002 0.044 ± 0.003 0.043 ± 0.002 

Correlation 0.451 ± 0.023 0.573 ± 0.027 0.569 ± 0.026 0.539 ± 0.025 0.561 ± 0.026 
Table 5.  Experimental error statistics with 95% confidence intervals for 0-10 cm layer soil 
moisture, verified against Texas A&M North American Soil Moisture Database in situ 
observations from 1 April to 1 October 2011.  Experiment configurations are summarized in 
Table 3.  The best statistics in each category are in bold font.  
 
 
Metric Root Zone Soil Moisture  
# Stations 137 
Experiment OPL NoBC BC1 BCS BCV 
Bias 0.038 ± 0.015 -0.013 ± 0.016 -0.002 ± 0.016 0.014 ± 0.016 -0.009 ± 0.017 
RMSE 0.093 ± 0.008 0.094 ± 0.008 0.092 ± 0.008 0.092 ± 0.008 0.094 ± 0.008 
Unbiased 
RMSE 0.037 ± 0.003 0.040 ± 0.003 0.036 ± 0.002 0.038 ± 0.003 0.038 ± 0.003 

Correlation 0.672 ± 0.040 0.685 ± 0.043 0.680 ± 0.043 0.667 ± 0.042 0.677 ± 0.045 
Table 6.  As Table 5, but for root zone (top 1 m) soil moisture.
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a) b)  

c) d)   
Figure 1.  Soil moisture data assimilation case from 1 April 2013: a) Model background 0-10 cm 
volumetric soil moisture (cm3/cm3); b) SMOS soil moisture retrieval; c) 0-10 cm soil moisture 
analysis; d) UN Food and Agricultural Organization map of irrigated areas.  
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a)  

b) c)  
 
Figure 2.  a) Cumulative Distribution Functions (CDFs) of SMOS retrieved surface soil moisture 
(solid curves) and modeled 0-10 cm soil moisture (dashed curves) for all model points, for 
March-September 2013.  b) Correction curves derived from CDFs for six vegetation categories.  
c) Correction curves derived from CDFs for seven soil type categories.   
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Figure 3.  Land cover categories for the model domain.  Rectangular box indicates area excluded 
from CDF matching database prior to June 1. 
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a)  b) 

c)  d)  
Figure 4. Histograms of (a) RMSE, (b) ubRMSE, (c) bias, and (d) correlation (RCORR) and 
anomaly correlation (ACORR),, for SMOS Level 2 retrieved soil moisture, as compared to 
NASMD ground station measurements.  The distribution of values is created by calculating these 
metrics separately at each ground station. 
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a)  

b)  

c)  
Figure 5. Time series of upper zone (0-10 cm) and root zone (0-1 m) in situ soil moisture (black) 
and collocated model soil moisture [red: open loop (OPL); green: SMOS data assimilation 
without bias correction (NoBC); blue: SMOS data assimilation with uniform bias correction 
(BC1)] from 1 Mar 2011 to 30 Sep 2011, for three locations:  a) Prairie State Park, Missouri; b) 
Stillwater, Oklahoma; c) Pittsfield, Illinois.  Vertical bars indicate daily precipitation (scale on 
right).  
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a) b)  
 

c) d)  
Figure 6.  Changes in validation statistics (SMOS data assimilation uniform bias correction run 
BC1 minus open loop control run OPL) at field stations for 1 Apr 2011 to 1 October 2011.  a)  0-
10 cm correlation; b) 0-10 cm unbiased RMSE (cm3/cm3); c) root zone correlation; d) root zone 
unbiased RMSE (cm3/cm3).  In each case, blue indicates improvement and red indicates 
degradation when compared to the station measurements.  


